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Abstract 
 

Intestinal pathogens are exposed to various stress conditions during their infectious cycle.  Anaerobiosis, one 
of such hostile condition, is offered by the host within gut and intestinal lumen, where survival, multiplication and entry 
into intestinal epithelial cells are priority for the invasion of the pathogen.  The fumarate reductase (frdABCD), 
dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) 
operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors 
fumarate, DMSO, TMAO, and nitrate, respectively.  They are regulated in response to nitrate and oxygen availability 
and changes in cell growth rate.  Vitamin B12 (cobalamin) is synthesized by Salmonella Typhimurium only under 
anaerobic growth conditions used as a cofactor in four known reactions.  The deletion of cobS and cbiA genes prevent 
any form of cobalamin production.  In the present study we evaluate the infection of birds by mutants of STM, with the 
anaerobic respiratory system committed by mutations in the genes: narG, napA, cobS, cbiA, frdA, dmsA, and torC.  
Virulence was assessed by oral inoculation of groups of one-day-old broilers with 0.1 mL of culture contained 108 
colony forming units (CFU)/mL or diluted at 10-3 and 10-2 of strains mutants of Salmonella Typhimurium.  Clinical 
signs and mortality were recorded over a period of 21 days.  In general, the symptoms of chickens infected with the 
mutant strains were similar to those presenting by control birds.  Except for STMNalr ∆cbiA, all showed reduced 
capacity to cause mortality in comparison with the original strain. The mortality of group of chickens infected with 
STMNalr ∆narG, STMNalr ∆frdA, STMNalr ∆dmsA and STMNalr ∆cobS∆cbiA showed significant decrease in 
mortality compared to control group (p<0.05).  
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Introduction 
 

Salmonellae are significant not only as threat 
to public health worldwide, but also as a model system 
for the study of fundamental mechanisms of bacterial 
pathogenesis.  During Salmonella infection, the growth 
phase and growth conditions of the organism are 
important in attachment, invasion, and the regulation of 
many virulence genes (17, 33, 32).   

Cells grown under limited oxygen 
concentrations are more invasive and adhere better to 
cells than do aerobically grown or stationary-phase 
cells (33).  As the pathogen enters and moves through 
its animal host, it encounters a series of unique 
environments (41).  During infection, serovar 
Typhimurium must adapt to changes in oxygen 

encountered in the gastrointestinal tract of the host (44).  
Exposure of STM to anaerobic conditions has been 
observed to enhance its virulence (52), indicating 
anaerobiosis to be an important environment for 
intracellular survival of the bacterium (20).  Salmonella 
Typhimurium can respire either aerobically or 
anaerobically by using one of the alternative electron 
acceptors: oxygen, TMAO, DMSO, or fumarate.  
Depending on the availability of these respiratory 
substrates, the cell synthesizes one or more of the 
terminal enzymes of the electron transport pathways.  
DMSO and TMAO reductase, encoded by dmsABC, 
exhibit a broad substrate specificity for reducing 
TMAO, DMSO, and others amine-N-oxides (10, 60, 
47).  Fumarate reductase (frd) is encoded by the 
frdABCD operon. It catalyzes the interconversion of 
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fumarate and succinate and is a key enzyme for the 
anaerobic functioning of many organisms respiring with 
fumarate as terminal electron acceptor, although under 
physiological conditions, it is thought to perform the 
reductive reaction primarily during anaerobic growth 
(1, 57, 28).   

Under different growth conditions, Salmonella 
expresses three different nitrate reductase activities 
converting nitrate to nitrite during anaerobic cell 
growth (8).  The periplasmic nitrate reductase (nap) is 
expressed primarily during anaerobic growth in the 
presence of very low concentrations of nitrate (14).  
The inducible nitrate reductase A (NRA), encoded by 
the narGHJI operon, is a membrane-bound enzyme 
containing three subunits α, β and γ.  The active site of 
the membrane- associated α subunit, narG, is a 
molybdopterin guanine dinucleotide cofactor located in 
the cytoplasm (34, 29, 45). It couples the oxidation of 
physiological substrates, especially formate, to nitrate 
reduction generating a proton electrochemical gradient 
(7, 13).  The third nitrate reductase, encoded by the 
narZYWV operon, is structurally very similar to nitrate 
reductase A (11, 12), but it is expressed extremely 
weakly during both aerobic and anaerobic growth (27). 

The synthesis of vitamin B12 is a complex 
anaerobic process that requires approximately 25 
different enzymes (21).  Cobalamin is a known cofactor 
for numerous enzymes mediating methylation, 
reduction, and intramolecular rearrangements (49,  18).  
These enzymes are as follows: (i) Homocysteine 
methyltransferases, (ii) Ethanolamine ammonia lyase, 
(iii) Propanediol dehydratase (Havemann et al, 2003), 
(iv) Queuosine synthetase (49).  

Material and Methods 

 
Bacterial strain and culture media.  Salmonella 

enterica serovar Typhimurium produces gastroenteritis 
and intestinal lesions (31).  For ease of enumeration 
spontaneous nalidixic acid-resistant (25µg/mL) mutant 
derivates of this strain were used.  The mutants were 
constructed from Salmonella Typhimurium F98 Nalr 
strain.  S. enterica serovar Typhimurium F98 is a wild-
type strain that is virulent for chickens and colonizes 
the chicken gut efficiently (5, 61, 56). 
Broth cultures consisted of 10mL volumes of LB broth 
(Invitrogen No 12780-052) incubated for   24h/37o C in 
a shaking incubator (100 rpm). The broth culture 
contained approximately 1.0 x108 (S. Typhimurium) 
CFU/mL. 
 
Mutant construction. Salmonella Typhimurium mutants 
were constructed defective in anaerobic respiration. In 
brief, four primers were designed for each gene to be 
mutated so that two fragments close to the 5’ and 3’ 
ends of the gene could be amplified leaving a central 
deletion in the amplified gene and incorporating KpnI 
or BamHI sites facilitating insertion of a kanamycin 
(cbiA, torC, narG gens) or spectinomycin (napA, frdA, 
dmsA e cobS gens) cassette. Initial cloning was into 
pGEM T Easy (Promega) and then into the suicide 

vector pJCB12 in Escherichia coli (E.coli) S.17.1λ pir, 
which was used for conjugation into Salmonella 
Typhimurium F98. Mutants were selected by resistance 
to kanamycin or streptomycin sensitivity and were 
checked for their Salmonella O-serotype by slide 
agglutination with antisera and for smoothness by 
absence of agglutination with acriflavin (0.001%). The 
integrity of the constructs was checked by PCR using 
the same primers.  
 
Transduction. Mutants of Salmonella Typhimurium 
with double deletions were obtained by transduction 
using bacteriophage P22 (Ø P22) following standard 
protocols (6, 50). Transductants were plated on LB agar 
containing spectinomycin or kanamycin. After 
incubation at 37OC/24h, they were checked again by 
PCR.  
 
Virulence assays.  

 
Experiment 1. Assessment of mortality 

 
 Virulence was assessed by oral inoculation of 
groups of one-day-old broilers with 0.1 mL of culture 
containing 108 CFU/mL or diluted at 10-3 of strains 
mutants of Salmonella Typhimurium. Nine groups of 
20 birds were formed. Inocula were prepared for STM, 
strains STMNalr 

∆dmsA Spcr, STM Nalr ∆cobS Spcr, 
STMNalr ∆frdA Spcr, STMNalr ∆napA Spcr, STMNalr 
∆cbiA Canr, STMNalr ∆narG Canr, STMNalr ∆torC 
Canr 

∆dmsA Spcr, STMNalr ∆cobS Spcr 
∆cbiA Canr and 

original strain STM Nalr (control group).  Clinical signs 
and mortality were recorded over a period of 21 days. 
  
Experiment 2. Assessment of systemic infection 

 
Systemic infection was assessed by oral 

inoculation of groups of one-day-old broilers with 0.1 
mL of the mutant or wild culture containing 108 
CFU/mL or diluted at 10-2 of strains mutants of 
Salmonella Typhimurium. Six groups of 20 birds were 
formed. Inocula were prepared for STM, strains 
STMNalr 

∆dmsA Spcr, STM Nalr ∆cobS Spcr, STMNalr 
∆frdA Spcr, STMNalr ∆napA Spcr, STMNalr ∆cbiA 
Canr, STMNalr ∆narG Canr, STMNalr ∆torC Canr 

∆dmsA Spcr, STMNalr ∆cobS Spcr 
∆cbiA Canr and 

original strain STM Nalr (control group).  Clinical signs 
and mortality were recorded over a period of 21 days.  
Twenty one day post-infection (dpi), half of the birds 
were euthanized by cervical dislocation, and then, 
necropsied. Liver and cecal contents were collected to 
determine the number of Salmonella using Brilliant 
Green Agar plates containing 25 µg/mL nalidixic acid 
and 40 µg/mL novobiocin (VBNal/Nov), as described 
by Smith et al. (53).  Swabs were streaked directly onto 
VBNal/Nov plates and then kept into a tube containing 
2 mL selenite broth. Both plates and tubes were 
incubated at 37ºC/24h. In case of no growth, the swab 
was plated again onto VBNal/Nov and incubated at 
37ºC/24h (5). 
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Statistical analysis 

 
Non parametric Qui-square test with 

significance level of 5% was performed to analyze 
mortality; P values of <0.05 were regarded as 
statistically significant (25). 
 

Results 
 

In experiment 1, it was assessed the mortality 
caused by mutants of Salmonella Typhimurium with 
defectives genes (narG, napA, cobS, cbiA, frdA, dmsA, 

and torC).  After infection, the birds were daily 
observed.  Clinically, from the 3rd dpi, the chicks 
showed drowsiness, apathy, weakness and anorexia. 
Around the cloaca, there was accumulation of feces, 
sometimes brown-greenish.  Mortality started from 4 
dpi. Incoordination was observed from 7 dpi, with 
swelling of tibiotarsal and humeroradial joints with 
claudication. There were also shaking of head and neck 

and some animals showed blindness (unilateral or 
bilateral). After 16 dpi, the chicks began to recover. It 
was noticed an increase in consumption of food and 
water. In general, the symptoms displayed by the birds 
infected with the mutant strains were similar to those 
presented by the birds of control group. 

The results about mortality are depicted in 
tables 1 and 2.  In Table 1, the birds were challenged 
with diluted culture (10-3) of STM. Mortality was lower 
in the group challenged with STMNalr narG strain (p 
<0.05).  A new experiment was conducted by using 
inoculums diluted at 10-2.  This experiment was done 
with the mutants of STM that provoked less mortality.  
The results are in Table 2. Tested STM strains were less 
virulent in some degrees. Nonetheless among the five 
mutants tested (STMNalr ∆narG, STMNalr

 

∆cbiA∆cobS, STMNalr ∆cbiA, STMNalr ∆frdA, 

STMNalr ∆dmsA), only mortality provoked by 
STMNalr ∆cbiA strain was not significant (p > 0.05). 
 

 
Table 1. Mortality of one- day-old broilers in experimental infection with diluted culture (10-3) of strains of STM with 
defective genes related to anaerobic respiration 

 

 
**C: Control group (wild strain).  #Ce: Cecum.  
* Statistically significant difference compared to the control group (χ2, p < 0.05). 

 
Table 2. Mortality of one-day-old broilers in experimental infection with diluted culture (10-2) of strains of STM with 
defective genes related to anaerobic respiration. 

 
**C: Control group (wild strain).  #Ce: Cecum. #L: Liver.   
* Statistically significant difference compared to the control group (χ2, p < 0.05). 
 

 
Cumulative mortality in days-post-infection 

 
Total 

 
Swabs  

(+) 

 
Defective 

gene 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 N./Total (%) CE# (%) 

narG    1       2        2/20* 10 100% 
frdA   1  4 5    6        7 7/20 35 100% 
dmsA   1  2 5  6 7  8 9      10 10/20 50 100% 
cbiA   1 5 6  7 8  9 10       10 10/20 50 100% 
cobS  1 2  3 4 5 6          6 6/20 30 100% 
napA 1  4   5  6 7          7/20 35 100% 
cobS 
cbiA 

  1 2    3  4         4/20 20 100% 

torCdmsA  1 2  5  6      7 8     8/20 40 100% 
**C  1 3 4 5   6 7 8         8/20 40 99,9% 

 

Cumulative mortality in days-post-infection 

 

Total % 

 
Swabs  (+) 

 
 

Defecti
ve gene 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
Núm. 
Total 

(%) 
#L 
% 

#CE % 

narG 5 14 20 21 22 23   24 27 28 29  30    30/60* 50 31 100 

frdA 3 10 15 19 21 22 24 25  26 29       29/60* 48 40 100 

dmsA 2 13 17 21 23 24 25 26 27  28 29 30     30/60* 50 39 100 

cbiA 3 12 16 21 25    26 30 32 33 35     35/60 58 33 100 

cobS 
cbiA 

2 14 19 23 26 27 28 29   30       30/60* 50 25 100 

**C 3 11 15 19 24  28 32 36 41 43 45  46    46/60 77 33 100 
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Discussion and conclusion 

 
The present work was an attempt to begin to 

understand in a more detailed way the nature of the 
interaction between colonising Salmonella strains and 
the host, during the process of anaerobic respiration. To 
respire anaerobically, Salmonella produces enzymatic 
complexes according to the available substrate into the 
host cell. Sometimes, under certain circumstances, the 
enzymatic complexes could inhibit the action of each 
other.  In this work, mutants of STM containing 
defective genes related to anaerobic respiration were 
prepared. These mutants were inoculated orally in 1-
day-old chickens susceptible to clinical fowl 
paratyphoid. In general, the symptoms of chickens 
infected with the mutant strains were similar to those 
presented by control birds.  The mortality of the group 
infected with STMNalr ∆narG, STMNalr ∆frdA, 
STMNalr ∆dmsA and STMNalr ∆cobS∆cbiA showed 
significant lower mortality in comparison to the wild 
strain (p<0.05). Within the experimental adopted 
procedure, it was not possible to establish the reasons 
why the mutant strains became less pathogenic. 
However, there are studies that seek to clarify these 
mechanisms (42). 

Under anaerobiosis, nitrate is the most 
favorable electron acceptor (45).  Salmonella 
Typhimurium survives and proliferates within 
macrophages, where it withstands anti-microbial 
responses such as the production of reactive oxygen 
species (ROS) (58), and reactive nitrogen species 
(RNS), including nitric oxide (NO). Mills et al. (2005) 
suggested that Salmonella serovars contain multiple 
enzymes that are capable of detoxifying NO under both 
oxic and anoxic conditions. Salmonella Typhimurium 
grown anaerobically with nitrate is capable of 
generating detectable NO after nitrite (NO2) addition 
(Fang, 2004).  According to Gilberthope et al. (2008), 
mutant cells lacking the membrane-bound nitrate 
reductase, narGHI, and membranes derived from these 
cells are unable to produce NO, demonstrating that, in 
wildtype STM, this enzyme is responsible for NO 
production. Enterobacteria possess several NO 
detoxifying mechanisms. This process is part of the 
inhibition mechanism of nitric oxide action, completing 
the reduction of NO3, producing a less toxic substance 
(3, 22,  24,  50, 51, 38).  According to Pawaria et al. 
(2007), during the infectious cycle, the intracellular 
pathogen Mycobacterium bovis uses mechanisms of 
bacterial protection against the toxic effects of nitric 
oxide similar to the ones presented by STM. 

There is evidence that in E coli and STM, the 
fumarate plays an important role in obtaining energy in 
conditions of anaerobiosis (28, 57). With the inhibition 
of production of the enzyme fumarate reductase, delays 
may occur during bacterial growth (55, 28). As the 
results obtained in this study, we found that the strain 
STMNalr ∆frdA caused lower mortality of birds in 
comparison to results for the original strain. The 
decrease in mortality due to inactivation of  frdA gene 
could be justified by the role of fumarate and its 
metabolites as factors involved in activation of flagellar 

direction and rotation. This mechanism is essential for 
understanding of the process of chemotaxis, because the 
direction of flagellar rotation determines the mode of 
swimming (4).  Motility is usually considered virulence 
factor of pathogenic bacteria (16).   

Dimethyl sulfoxide (DMSO) is a component of 
the sulfur cycle in anaerobic conditions.  Several 
microorganisms have the ability to reduce DMSO into 
dimethyl sulfide (DMS), but this mechanism is 
unknown (9,  60, 37).  The expression of the enzyme 
DMSA is well characterized in the virulence of 
Actinobacillus pleuropneumoniae, etiologic agent of 
pleuropneumonia in pigs. The deletion of the gene 
DMSA was shown to attenuate the clinical symptoms 
of acute infection (2). 

The decrease in mortality of birds inoculated 
with the mutant ∆cobS∆cbiA can be correlated to the 
fact that cobalamin is a cofactor of several enzymes that 
act in the process of anaerobic respiration. Colabamin  
is important for normal development of STM. The 
synthesis of cobalamin is limited to a few 
representatives of bacteria and archaea (36, 48, 15,  50). 
Several derivatives of vitamin B12 act as cofactors of 
reactions responsible for the anaerobic catabolism of 
carbon sources (35). Under Price-Carter et al. (2001), 
mutant defects in the synthesis of B12 have impaired 
anaerobic growth.  This is in agreement with an 
expansive view of virulence determinants which 
include not only the factors that cause disease, but also 
functions that contribute to bacterial survival and 
multiplication in the host (38, 26).  Further research on 
bacterium physiology should be carried out to elucidate 
the events described in this research and to assess the 
mutant. 

Since we now believe that interaction between 
enteric pathogens and the avian mucosa plays an 
integral role in determining the level of colonization, it 
is important in designing such an experiment to include 
a selection of bacterial pathogens which have different 
colonization phenotypes.  In summary, the pattern of 
gene expression indicated specific gene associated with 
growth and nutrient acquisition. Taken together, these 
data lead us to propose that narG, frdA, dmsA and 
cobScbiA activity may be crucial in the respiratory and 
gastrointestinal tracts, by providing either energy by 
anaerobic respiration or important metabolic 
intermediates or both of the above.  Further research on 
bacterium physiology should be carried out to elucidate 
the events described in this research and to assess the 
mutant as a vaccine strain. 
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