Histopathological and parasitological analysis of skin tissues biopsies from two distinct anatomical areas of the ears of dogs naturally infected with *Leishmania (Leishmania) chagasi*.

Eliane P. Moura¹, Raul R. Ribeiro¹, Weverton M. Sampaio², Wanderson G. Lima², Cintia F. Alves¹, Ferdinan A. Melo², Maria N. Melo¹, Washington L. Tafuri², Wagner L. Tafuri¹ and Marilene S. M. Michalick¹*

¹Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil.
²Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil.
*Corresponding author: Prof. Wagner Luiz Tafuri; Address: Departamento de Patologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Brazil.

Submitted October 15th 2007, Accepted January 30th 2008

Abstract

Canine visceral leishmaniasis is an endemic disease in Latin America caused by *Leishmania (Leishmania) chagasi* and transmitted to man and animals by infected blood-sucking sandflies of the genus Lutzomyia. Dogs are considered to be the primary domestic reservoir of disease because they present an intense cutaneous parasitism. The aim of this study was to evaluate the intensity of the inflammatory process and to compare it to the parasite load of tissue from two different sites of the ear skin of dogs naturally infected with *Leishmania chagasi*. We think that exist a specific anatomical region that exhibits a relatively higher rate of parasitism. For diagnostic analysis, serological tests were carried out using the indirect fluorescence antibody test (IFAT) and the enzyme-linked immunosorbent assay (ELISA). Twelve animals naturally infected with *Leishmania chagasi* were euthanatized with a lethal dose of Sodium Thiopental™ and T61™. During the necropsy, fragments of the extremity and middle anatomical regions of the ear were collected. All tissues were fixed in a 10% formalin solution and then paraffin-embedded for histopathological (HE) and immunohistochemical analysis. The streptavidin-peroxidase immunohistochemistry method was used to detect tissue amastigotes using optical microscopy. Our results indicated a chronic inflammatory reaction, ranging from discrete to an intense magnitude. The inflammatory process was more frequently observed in the extremity of the ear than in the middle portion of the ear (p<0.05). The presence of parasites in the ear extremity was higher than in other evaluated regions. A positive correlation between the tissue inflammation, parasitism, and serological data was confirmed at both ear positions (p<0.05). Skin biopsies are an important tool for CVL diagnosis and the ear extremity represents an appropriated area to perform the assays.

Keywords: *Leishmania chagasi*, dogs, skin biopsies, diagnosis, ear extremity, ear middle.

Introduction

Visceral leishmaniasis (VL) is an important public health problem for which 0.5 million cases has been reported a year worldwide (21). In the New World, the disease is caused by *Leishmania (Leishmania) chagasi* (sin. *L. infantum*) species (13) and it is endemic in several Latin American countries. Brazil accounts for 90% of the...
human cases disease. The parasite is transmitted to man
and animals by infected blood-sucking sandflies of the
genus Lutzomyia (9). The dog is the main reservoir of VL
and, in Brazil, some authors have reported a strict
connection between the canine infection to the human
infection (4,6,12).

Canine Visceral Leishmaniasis (CVL) is a severe
systemic disease of dogs and symptomatic CVL due to
Leishmania chagasi in America presents clinically with
anemia, emaciation, splenomegaly, local or generalized
lymphadenopathy, cutaneous lesions, ocular lesions,
weight loss, and cachexia (2,7,17). Several authors have
been demonstrated that phlebotomine sandflies that fed in
symptomatic dogs exhibit a higher infection rate than flies
feeding on asymptomatic animals (5,8,14). Nevertheless,
even the lower infectivity rates of asymptomatic animals
must be taken into account in the epidemiology of the disease (8,15).
Moreover, upon clinical examination it is possible for both asymptomatic
and symptomatic animals to not exhibit macroscopic skin
lesions, but these animals can harbor parasites in the skin
tissue, especially in the ears (2,6,22,23). Furthermore,
about half of all infected dogs lack clinical signs of
leishmaniasis, but these asymptomatic dogs could be as
infective to the vector as symptomatic dogs (1,2,16).

Accurate and rapid diagnosis of Leishmania
infection in dogs is of great importance for epidemiology
surveys and veterinary practice. The methods employed for
the diagnosis of CVL include: (1) microscopic detection of
the parasite in bone marrow and lymph node aspirates
stained with Giemsa, (2) demonstration of specific anti-
Leishmania antibodies in the serum of infected animals by
the indirect fluorescence antibody test (IFAT), (3) the
direct agglutination test (DAT), (4) the enzyme-linked
immunosorbent assay (ELISA), and (4) isolation of the
parasite by “in vitro” culture or by hamster inoculation
(2,20). Thus, definitive diagnosis is based on detection of
the parasite. Direct parasite detection in skin biopsies,
which can be obtained through an extremely simple
surgical procedure, is a good tool for the definitive
diagnosis. Moreover, PCR of an ear skin biopsy sample
was the best method to diagnose canine Leishmania
infection in comparison to immunohistochemical and
histological methods (23).

We believe should exist an anatomical area that
exhibits a higher rate of parasitism than others; histopathological
determination of these sites could improve tissue parasitism
detection. The aim of this study was therefore to evaluate the intensity of inflammatory
process and to compare it to the parasite tissue load in
different sites of the ears of naturally infected dogs with a
defined clinical status of the infection by L. chagasi.

Materials and Method

Animals and Defined clinical status

Animal care and experimentation followed the
current strategy for zoonotic leishmaniasis as proposed by
the WHO (20). Twelve mongrel dogs of unknown age
were obtained from the City of Santa Luzia, Belo
Horizonte metropolitan area, Minas Gerais (MG), Brazil.
All dogs were positive for Leishmania as tested by an
indirect fluorescence antibody titers (IFAT), (Titers > 1:40);
Camargo et al.(3) and enzyme-linked immunosorbent
assay (ELISA) (19). Tissue pouch preparations of bone
marrow were stained in a 10% solution Giemsa to detect
Leishmania parasites; all animals were positive based on
this assay.

All infected dogs were clinically classified into
the following groups: (1) symptomatic dogs – animals that
exhibited the classical signs of the disease such as
cutaneous alterations (alopecia, dry exfoliative dermatitis
or ulcers), onychogryphosis, keratoconjunctivitis, cachexia
and anemia, and (2) asymptomatic dogs – animals that
appeared to be healthy without any clinical sign of the
disease (10,11).

Histopathology

Dogs were euthanatized with a lethal dose [2.5%
(1.0 ml/Kg)] of Sodium Thiopental, administered
intravenously and T61™ (0.3 ml/Kg). During the
necropsy, two anatomical regions of the external ear
(pinna) and another one from the middle of the ear were
collected. These two samples were collected from both
ears of each dog resulting in four tissue samples of each
animal. In addition, the skin of the area from which the
biopsies were taken was macroscopically normal.

All tissues samples were fixed in 10% formalin
solution. After 72h of fixation, the samples were
dehydrated, cleared, embedded in paraffin, cut (4- to 5mm
thick), and stained with hematoxylin and eosin (HE) for
histological study. This study was carried by light
microscopy and the inflammatory process classified in
absence, discrete, moderate and intense inflammatory
reaction.

Immunohistochemical method for labeling amastigote
forms of Leishmania

The streptavidin-peroxidase immuno
histochemistry method was carried out for tissue
amastigotes detection by optical microscopy (18). Deparaffinized
slides were hydrated and incubated in 4% hydrogen peroxide (30 v/v) in 0.01 M PBS, pH 7.2,
followed by incubation with normal goat serum (diluted
1:100). A heterologous immune serum from dogs naturally
infected with L. chagasi (diluted 1:100 in 0.01 M PBS)
was used as primary antibody. Slides were incubated
for 18–22 h at 4°C in a humid chamber. After washing in PBS,
the slides were incubated with goat anti-mouse and anti-
rabbit biotinylated (Link-DAKO, LSAB2 kit, California,
USA), washed again in PBS and incubated with

Brazilian Journal of Veterinary Pathology. www.bjvp.org.br . All rights reserved 2007.
streptavidin-peroxidase complex (Link-DAKO, LSAB2 kit, California, USA) for 20 min at room temperature. The reaction was developed with 0.024% diaminobenzidine (DAB; Sigma, St Louis, USA) and 0.16% hydrogen peroxide (40 v/v). Finally, the slides were dehydrated, cleared, counter-stained with Harris’s Hematoxylin and mounted with coverslips.

Statistical analysis

To compare the two anatomical sites of the ear, the Wilcoxon test was used. The Spearman test was carried out to detect correlations between the parasite load and the inflammatory response.

Results

Histologically, skin samples showed a chronic inflammatory reaction irrespective of anatomical region; however, the intensity of this reaction varied with the animal’s clinical status. In general, the reaction ranged in intensity from discrete to moderate. However, an intense inflammatory process was more frequent in some cases of symptomatic animals. In general, the chronic inflammatory reaction was characterized by a diffuse mononuclear infiltrate in the upper dermis and focal around vessels, hair follicles and glands of the deep dermis (Figs. 1A-B). Immunolabelled amastigotes were detected in both upper and deep dermis (Figs 1C-E).

In general, the inflammatory reaction was more intense in the ear extremity (pinna) then the middle of the pinna (p<0.05) (Graphic 1). Moreover, parasites were more readily identified in biopsies of the ear extremity than biopsies of the middle of the pinna. Indeed, immunolabelled amastigotes were more frequently observed in the ear extremity (p<0.05) (Graphic 2).

A positive correlation was observed between the intensity of the inflammatory process and the presence of amastigotes forms of *Leishmania* (p<0.05), but it occurs undependably of the anatomical site (Graphic 3).

Correlation testing between the serology (ELISA) and inflammatory reaction was preformed for all cases. Our data indicate a positive correlation of the intensity of the inflammatory reaction in the extremity and middle portions of the ear (p<0.05) with positive ELISA results titers (Graphic 4). The same results were observed between the parasite load and ELISA data (p<0.05) (Graphic 5). However, we did not observe any correlation with all parameters with nose skin sections (data not shown).
Figure 1: Skin ear section (extremity of pinna) of a dog naturally infected with *L. chagasi*: (A) Observe a presence of inflammatory reaction diffuse in the upper dermis (UD) and focal in the deep dermis (DD) HE 40x. CT means cartilage tissue and BV means Blood Vessel. (B) High magnification showing a chronic cellular exudate around the blood vessels (BV) and pyki (P) in the deep dermis (DD) HE 440x; (C) Note a presence of immunolabeled amastigotes (brown color) in upper dermis (UD) and deep dermis (DD) Streptavidin-peroxidase counter-staining with Harris Hematoxylin 40x.; (D) High magnification showing immunolabeled amastigotes inside macrophages in the deep dermis (arrows). Streptavidin-peroxidase counter-staining with Harris Hematoxylin 440x; (E) Observe details of parasitized cells nearest to the epithelial cells layers (arrow). Streptavidin-peroxidase counter-staining with Harris Hematoxylin 440x.
The extremity of the ears, independent of the animal clinical status, was found to represent the best area to carry out ears skin biopsies, considering both the parasitism data and inflammatory processes. In general, during veterinarian practice, biopsies are obtained from the middle of the ears because this procedure is less harmful and because it avoids cicatization response (7). According to this study, biopsy site interferes with sensitivity in diagnosis. Using samples from middle canine ear tissue instead of the extremity of the ear (pinna) displays a lower sensitivity. This finding could also be considered for use in parasitological surveys of canine visceral disease, xenodiagnosis practice studies and vaccine strategies research.

Acknowledgements

We thank the Zoonosis Control Center of the municipality of Santa Luzia, Minas Gerais, for the kind donation of the study animals and to the colleague Dr Hélio Chiarini Garcia, from the Departamento de Morfologia, ICB/UFMG, for the excellent support in preparing the figure. This work was supported by Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG - Grants CDS2263/97; EDT-2124/03) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - grant 472287/01-0 – NV)

References

