Hemorrhagic cystitis caused by extraintestinal pathogenic Escherichia coli in a dog (Canis lupus familiaris)

Agustina Troncellito1, Karina C. Fresneda2, Janet D. Moore2, Chitrita DebRoy3, Carolina Escobar4, Francisco R. Carvallo2*

1Faculty of Veterinary Sciences, Central Buenos Aires Province National University. General Pinto 399, Tandil, Argentina. 2California Animal Health and Food Safety Laboratory. 105 W Central Ave, San Bernardino, CA 92408 3E. coli reference center, The Pennsylvania State University. 115 Henning Building University Park, PA 16802. 4School of Veterinary Medicine, Andres Bello University. Republica 255, Santiago, Chile.

*Corresponding author: California Animal Health and Food Safety Laboratory – San Bernardino branch. University of California-Davis. 105 W Central Ave, San Bernardino, CA 92408. E-mail: fcarvallo@ucdavis.edu

Submitted August, 20th 2018, Accepted December, 19th 2019

Abstract

Escherichia coli strains that are able to colonize outside of the gastrointestinal tract are classified as extraintestinal pathogenic E. coli (ExpEC). A 6.5 female German shepherd dog with history of fever and hematuria was submitted for necropsy. Extensive transmural hemorrhagic cystitis with necrotizing vasculitis was identified in the urinary bladder. Multifocal thrombosis and intralesional bacteria were seen in the kidneys, liver, spleen and brain. E. coli O88:H4 was isolated in pure culture from the urinary bladder and other organs. This strain carried the virulence genes cnf-1, sfa, fim, hlyD and PapGIII which are associated with ExpEC strains.

Key words: urinary infection, ExpEC, septicemia.

Introduction

Escherichia coli is a gram negative, medium size bacterial rod (0.4-0.6 x 2-3 µm) commonly found in the distal small intestine and large intestine of all mammals (4,11). E. coli can be a commensal inhabitant and exists in a symbiotic state or it can be a pathogenic bacteria (4). Pathogenic E. coli can be further divided into those causing enteric disease and those associated with extraintestinal disease (5, 11). The types of E. coli that cause enteric disease include enterotoxigenic and enteropathogenic strains. E. coli strains that are able to colonize and cause lesions outside of the gastrointestinal tract are classified as extraintestinal pathogenic E. coli (ExpEC) (2, 4, 5, 11).

ExpEC has virulence factors that confer the ability to produce septicemia, pneumonia, meningitis, mastitis and urogenital tract infections in several species (11). E. coli is the most commonly isolated infectious agent in cases of human and canine urinary tract infection, and several different sequence types have been isolated (9). This report describes a case of hemorrhagic cystitis associated with ExpEC in a dog (Canis lupus familiaris).

Case report

A 6.5 year old, spayed female German shepherd dog was presented with fever (40.3°C), sialorrhea, emesis, dyspnea, muscle tremors, bilateral mydriasis, ataxia, disorientation and hematuria. Thoracic radiographs were within normal limits. An in house Packed Cell Volume (PCV) and chemistry profile revealed moderate azotemia, increased total protein, albumin and globulins. At that time the PCV was 73%, so the azotemia and hyperproteinemia were attributed to dehydration. A second CBC, chemistry and urinalysis were sent to a reference veterinary laboratory. A high PCV (66%, RI 36-60%) was observed together with a mild mature neutrophilia (13158/µL; RI 2060-10600/µL) and mild monocytesis (1224/µL; RI 0-840/µL), interpreted as inflammation. The chemistry
profile revealed mild azotemia (BUN 50 mg/dL; RI 6-31 mg/dL and creatinine 2.2 mg/dL; RI 0.5-1.6 mg/dL), hyperphosphatemia (10 mg/dL; RI 2.5-6 mg/dL) and hypernatremia (180 mEq/L; RI 139-154 mEq/L) that were attributed to dehydration, even though the acid base status of the patient could cause changes in electrolytes. No significant differences were observed compared with the first chemistry performed the day before. An increased AST (290 IU/L; RI 15-66 IU/L) and CPK (1862 IU/L; RI 58-895 IU/L) was noted, compatible with muscle damage. The urine specific gravity was 1.040, which indicated and adequate renal concentrating ability, which supports the suspected pre-renal azotemia. The urinalysis revealed red urine with large numbers of red blood cells and protein.

The patient failed to respond to supportive treatment including oxygen, intravenous fluids and gastric protectants, and after a few hours, the dog was prostrate with labored breathing, body temperature of 41.7°C, and heart rate of 150 beats/minute. Due to increased progression of signs and failure to respond to all treatments, the owner requested the euthanasia.

At gross examination, the urinary bladder contained approximately 30 mL of opaque, dark red urine, the bladder apex was transmurally dark red/black, slightly thickened and firm, with an irregular, slightly nodular mucosal surface, which was also disrupted by several slender, sagittally oriented, dark red/black, slightly raised linear tracts that extended from apex to base (Fig. 1). No significant gross findings were detected in other organs. Histologically, acute, severe cystitis was characterized by multifocal to coalescing, transmural hemorrhages, superficial mucosal necrosis, multifocal necrotizing vasculitis, thrombosis and fibrinocellular exudation with moderate numbers of neutrophils and occasional macrophages within the lamina propria-submucosa (Fig. 2). Small numbers of Gram-negative bacilli were identified along the mucosal surface and within blood vessels (Fig. 2, inset). Lesions in other organs included thrombosis in liver, kidney, spleen and brain, and acute renal tubular necrosis.

Aseptically collected swabs of urine, urinary bladder wall, liver, spleen and brain were streaked onto blood agar plates, which were incubated at 37°C under aerobic and microaerophilic conditions. After 24h, a pure culture of a gram negative, ß-hemolytic rod was detected on all plates. The biochemical profile included gas production on triple sugar iron agar (A/Ag), urease (-), sulfur (-), indole (+) and motility (+) on SIM agar, and citrate (+) on Simmons citrate agar. The API 20E® (Lyon, France) profile identified this isolate as E. coli (99.5%). This isolate was submitted to the E. coli reference center at The Pennsylvania State University. Typing of the isolate revealed that it belonged to serogroup O88 and H4. Additionally, the bacteria were tested for genes encoding numerous virulence factors (Table 1) as previously described (3), identifying a profile characteristic for ExpEC. Other Ancillary tests were performed, including Rickettsia ricketsii PCR and fluorescence antibody test for Leptospira spp., both with negative results.

Figure 1. Urinary bladder. Hemorrhagic mucosa with numerous linear dark red/black tracts that extended from apex to base.

Discussion

Hemorrhagic cystitis and septicemia caused by ExpEC in a female dog is reported in this case. Different strains of E. coli have been described and these can be commensal organisms, intestinal pathogens or extraintestinal pathogenic strains (11, 16). E. coli colonizes the intestinal tract of all mammals a few hours after birth and persists throughout life, becoming the most important commensal organism of the small intestine (14). ExpEC can produce opportunistic extraintestinal infections, ranging from urinary tract infection to meningitis in humans and animals (11, 14). ExpEC is reported to cause lesions due to the presence of virulence factors such as α-hemolysin (hlyD), cytotoxic necrotizing factor toxin (cnf1), papG alleles and different adhesins (14). In particular, the papGIII allele is the predominant papG variant of E. coli isolates from dogs and humans with urinary tract infection (3). E. coli producing cnf-1 is referred to as necrotic E. coli, which has been isolated from humans with urinary infection and sporadically, in cases of child diarrhea (6, 13).
for these microorganisms to reach the urinary tract. The so-called “special pathogenicity theory” states that ExpEC has a selective advantage because of virulence genes which specifically favor the infection of extraintestinal sites (4). In dogs and cats, studies with large populations of animals have identified a wide variety of strains that are capable of inducing urinary infections, some of them with classic genetic profiles of ExpEC and others that do not carry the characteristic genes, which does support the “special pathogenicity” hypothesis (2, 9). Some researchers consider that ExpEC virulence factors evolved with the commensal lifestyle, which promotes colonization and survival of the normal gut environment (5, 17). In other words, extraintestinal infections have been interpreted as a coincidental by-product of commensalism. Interestingly, male dogs are more likely to ExpEC isolates than non-ExpEC isolates, indicating that virulence-associated genes may be necessary to overcome the anatomical barrier to UTIs in males (9). In addition, virulence genes in humans and animals are different, which suggest a difference in virulence requirement for E. coli binding urothelium in different species (2, 9).

Other causes of hemorrhagic cystitis in dogs include Nocardia asteroides (1), and treatment with carboplatin (10) or cyclophosphamide (8). Another cause of extensive urinary bladder hemorrhages in dogs include tumors, such as transitional cell carcinoma (12). All these causes were ruled out in this case.

In conclusion, we report a bacterial infection causing hemorrhagic cystitis and septicemia in a female dog, which likely originated after an ascending bacterial infection. Virulence factors detected in the strain of E. coli isolated are characteristic for ExpEC. We highlight the importance of genetic characterization of E. coli isolated from the urinary tract in dogs, which sometimes is overlooked as a contaminant.

Table 1. Serotype and virulence factors of extraintestinal pathogenic Escherichia coli isolated from a female German shepherd dog with hemorrhagic cystitis.*

| O | H | cnf1 | cnf2 | PAI | papA | ompT | fimH | papEF | traT | ireA | ibeA | hlyD | fyuA | iroN | sfa | iss |
|----|----|------|------|-----|------|------|------|-------|------|------|------|------|------|-----|-----|-----|-----|
| 88 | 4 | + | - | + | + | - | - | + | - | + | + | + | + | + | + | - |

* + = positive; - = negative; cnf1 and 2: Cytotoxic necrotizing factor toxin; PAI: Pathogenicity island; pap: Pilus associated with pyelonephritis fimbriae; ompT: outer membrane protease T; fimH: D-mannose specific adhesion fimbriae; traT: serum resistance associated protectin; ireA: iron regulated element siderophore; ibeA: invasion of brain endothelium A; hlyD: alpha hemolysin toxin; fyuA: Yersinia siderophore receptor; iroN: novel catecholate siderophore receptor; sfa: S fimbriae; iss: increased serum survival protectin; kps and kii: group II capsular polysaccharide synthesis protectin; lha: novel non-hemagglutinin adhesion; cvaC: colicin V synthesis protein protectin; sfaS: pilus tip adhesion, S fimbriae (sialic acid specific); KI: capsular polysaccharide antigen protectin; rfc: O-antigen polymerase; cdt: cytolethal distending toxin; focG: pilus tip molecule, F1C (sialic acid specific); uidA: Beta-D-glucoronidase; Usp: uropathogenic specific protein.

Figure 2. Urinary bladder. Extensive hemorrhages in the submucosa, with fibrin, neutrophilic infiltrates and desquamation of adjacent epithelium. Hematoxylin and eosin, 100X. Inset: Few Gram-negative rods (arrow) present within the inflammatory foci. Brown and Brenn stain, 600X.
Acknowledgements

The authors acknowledge Dr. Francisco Uzal for the English review of this manuscript, and Mrs. Juliann Beigesser, Mrs. Paula M. Yant and Mr. Ray A. Cazarez for their technical support.

References

