

Case Report

Toxoplasma encephilitis in a Collared Peccary (Dicotyles tajacu): clinical and pathological findings

Camila Larrañaga¹, Kanji Yamasaki^{1,2}, Victoria Machín¹, Guillermo Godiño¹, María Belén Crampet³, Álvaro Modernell³, José Manuel Verdes¹*

¹Pathology Unit, Department of Pathobiology, Faculty of Veterinary, Universidad de la República (Udelar). Route 8 Km 18, Montevideo 13000, Uruguay

²Senior Volunteer of Japan International Cooperation Agency (JICA), Br. Artigas 417 Of. 601, Montevideo 11300, Uruguay

³"Francisco Lecocq" Zoo Park, Montevideo City Zoological System, Intendencia Municipal

de Montevideo (IMM), Luis B. Berres, Montevideo 12600, Uruguay

*Corresponding author: E-mail: jose.verdes@fvet.edu.uy Submitted: May 30th, 2025. Accepted: August 11th, 2025.

Abstract

Toxoplasmosis is a widespread zoonosis affecting numerous mammalian species. Wild suoids have been confirmed as susceptible hosts of *Toxoplasma* spp., and their meat is frequently consumed by hunters, their families, and domestic dogs, posing a growing foodborne risk in South America. We conducted a pathological study on a young captive Collared Peccary that showed neurological signs. Severe brain lesions were observed, including parenchymal necrosis with demyelination, gliosis, meningitis, and perivascular cuffing. *Toxoplasma* cysts containing tachyzoites, as well as free tachyzoites, were identified within these lesions. Additionally, focal necrosis with inflammatory infiltration was noted in the liver and heart, along with marked pulmonary edema. Immunohistochemistry for canine distemper virus in the brain was negative. To the best of our knowledge, this is the first report detailing the pathological findings of *T. gondii* infection in a wild suoid (*Dicotyles tajacu*).

Keywords: Encephalitis, Pathology, Peccary, Toxoplasma gondii.

Introduction

Consumption of meat from *Sus scrofa* (a globally invasive wild suoid species) and native American wild suoids (peccaries) has become increasingly common in several countries, including those in South America (19). Their meat is typically consumed by hunters and their close social circles, and offal is often used to feed hunting dogs. Given the known association of foodborne diseases -such as toxoplasmosis-with wild suoid meat, assessing the incidence of these infections is crucial for evaluating the risks posed to humans, wildlife, and domestic animals (19).

Understanding *Toxoplasma* infections in both introduced and native wild suoid species is therefore essential. Toxoplasmosis in domestic pigs has been studied extensively since the 1950s (7, 8), and more recent research has focused on the molecular mechanisms underlying brain pathology caused by the parasite (11, 22).

Toxoplasma seroprevalence in European wild boars has been reported to range from 9% to 62%, depending on the region (1, 3, 6, 10, 17, 18). In South America, infection rates have been reported as high as 76.9% (19). Although numerous histological studies have described the effects of Toxoplasma in pigs (4, 5, 12, 14, 15, 16, 22, 23), reports detailing pathological findings in suoids, particularly peccaries, remain scarce.

The aim of this study was to characterize the pathological changes associated with *Toxoplama* infection of a captive juvenile Collared Peccary presenting with severe neurological signs.

Case description

The subject was a male captive Collared peccary (*Dicotyles tajacu*), less than one-year-old, referred from the Montevideo City Zoological System (Sistema Departamental

Zoológico, Parque Lecocq, IMM, Montevideo, Uruguay). The animal exhibited lethargy, lateral recumbency, tremors and strabismus; due to the severity of which, euthanasia was performed using an intravenous overdose of xylazine and thiopental. The animal was submitted to the Diagnostic Pathology Laboratory, Faculty of Veterinary, Universidad de la República, Montevideo, for anatomopathological examination. Tissue samples from the brain, lungs, liver, and heart were fixed in 10% neutral buffered formalin, routinely processed, sectioned at 4 um, stained with hematoxylin and eosin (H&E), and examined microscopically. Periodic acid-Schiff (PAS) staining was performed for special staining. Histopathological evaluations were conducted independently by six veterinary pathologists. Immunohistochemical (IHC) studies were performed on paraffin-embedded sections using previously described protocol (9). A rabbit polyclonal antibody specific for T. gondii (Polo Tecnológico de Pando, Udelar & DILAVE-MGAP, Uruguay) was applied overnight at 4°C, followed by the MACH 4 Universal HRP-polymer detection system (Biocare Medical, CA, USA). Additional IHC studies for canine distemper virus (CDV) were performed using a mouse anti-CDV monoclonal antibody (BIO-RAD, MCA 1893, 1:250 dilution), incubated overnight and detected with a mouse-on-canine HRP-polymer (Biocare Medical, CA, USA). GFAP (glial fibrillary acidic protein) immunostaining (PM 065 AA, RTU, Biocare Medical, CA, USA) was used to characterize astrocytic gliosis. Positive antigen-antibody reactions were observed by incubation with 3.3'-diaminobenzidine-tetrahidrochloride (DAB). All slides were counterstained with Mayer's hematoxylin.

Grossly, the lungs appeared dark red throughout all lobes. No significant macroscopic changes were noted in other organs.

Microscopically, severe lesions were observed in the brain, primarily in the cerebrum and cerebellum. These included parenchymal necrosis with demyelination, gliosis, meningitis, and perivascular cuffing. Necrosis and demyelination were distributed throughout both cortical and subcortical areas, with higher frequency in the cortex (Figs. 1 and 2). The cerebellum showed cortical degeneration, extending into the subcortical white matter, including Purkinje cell loss (Fig. 3). Necrotic changes with demyelination were progressed with infiltration of lymphocytes, plasma cells, Gitter cells and eosinophils accompanied with gliosis around the lesions. Gliosis, composed predominantly of proliferating astrocytes, was confirmed via GFAP-positive immunostaining. Reactive astrogliosis was indicated by positive GFAP immunostaining in the cytoplasm and cytoplasmic processes of reactive astrocytes (Fig. 4). Numerous Toxoplasma cysts containing tachyzoites were identified in and around necrotic foci. Cyst diameters ranged from 10.2 to 27.8 µm and were PAS-positive (Fig. 5). In some areas, ruptured cysts released tachyzoites into the parenchyma. The released tachyzoites were also found inside the cytoplasm of surrounding mononuclear cells of the necrotic areas. Abundant lymphocytes,

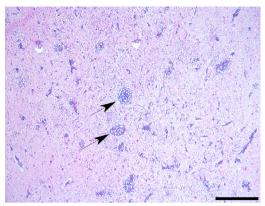
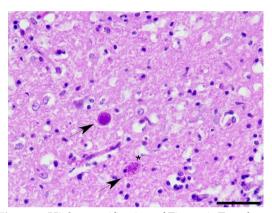



Figure 1. Parenchymal necrosis with demyelination is distributed throughout the white matter. Prominent perivascular lymphoplasmacytic cuffings are visible (arrows). Cerebrum. H&E stain. Original magnification 4×. Scale = 500 µm.

Figure 2. High magnification of Figure 1. *Toxoplasma* cysts are present (arrows); one cyst is ruptured with released tachyzoites (asterisk). Cerebrum. H&E stain. Original magnification $40\times$. Scale = $50 \, \mu m$.

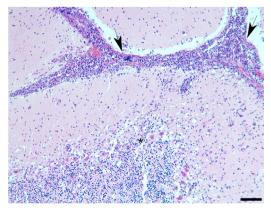
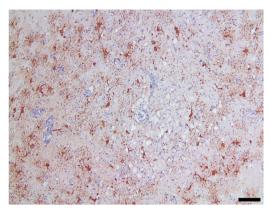
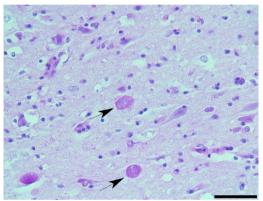




Figure 3. Severe meningitis (arrows) and degenerative changes (asterisk) extend throughout the cortex and into the subcortical white matter, with Purkinje cell degeneration and loss. Cerebellum. H&E stain. Original magnification $10\times$. Scale = $100 \, \mu m$.

Figure 4. Reactive astrogliosis demonstrated by GFAP immunostaining in the cerebral cortex. Original magnification $10 \times$. Scale = $100 \mu m$.

Figure 5. *Toxoplasma* cysts showing positive PAS staining (arrows). Cerebrum. PAS stain. Original magnification $40 \times$. Scale = $50 \mu m$.

plasma cells, and macrophages infiltrate the leptomeninges and surround their blood vessels in both the brain and cerebellum. Eosinophils were rare. Perivascular cuffings, mainly composed by lymphocytes and plasma cells, were one of the characteristic changes in this animal. Immunohistochemically, the cysts containing tachyzoites of *Toxoplasma gondii* and tachyzoites were immunopositive as fine brownish granules (Fig. 6). In addition, immunohistochemistry for CDV was negative in glial and nerve cells or in neuronal perikarya and their processes (axon and dendrites).

Although focal necrosis accompanied with mononuclear cell infiltration were observed in the liver, heart and lung, these were always mild inflammatory changes, characterized by lymphoplasmacytic infiltration, and did not spread to the surroundings, confirming that inflammatory changes in toxoplasmosis is not an important histological feature in these parenchyma. Severe hyperemia, congestion, and edema were also observed in the lungs. No significant changes were observed in the kidney. No *Toxoplasma* cysts and tachyzoites were detected by PAS staining and immunohistochemistry examination in the lung, heart, liver and kidney.

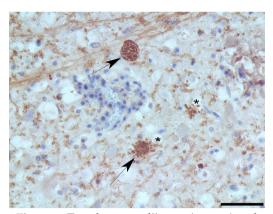


Figure 6. Toxoplasma gondii cysts (arrows) and released tachyzoites (asterisks) exhibit positive immunohistochemical staining in the cerebral cortex. Original magnification $40\times$. Scale = $50~\mu m$.

Discussion

Although several studies reported *Toxoplasma* infection rate due to serum antibodies in wild suoids (1, 3, 6, 10, 17, 18, 19), no previous reports on pathological changes in adult peccaries infected with Toxoplama were found in scientific databases. In contrast, pathological changes in domestic pigs affected with this disorder have been reported since the 1950s, and the lesions were observed in multiple organs such as lung, liver, spleen, lymph nodes, heart, muscles and brain (5, 8, 14, 15, 16, 20). Furthermore, the inflammatory lesions in brain, heart, liver, lung and muscles were observed two weeks after inoculation of Toxoplasma gondii in an experimental study in piglets (4). It was also apparent in our study that Toxoplasma infection caused more severe and chronical changes in the brain than in other organs. Focal necrosis with mild mononuclear cellular infiltration was observed in the liver, heart and lung, but Toxoplasma was not detected in these organs. Progressive changes in the liver, heart and/or lung have been reported to be one of the characteristic lesions of Toxoplasma infection in pigs (4, 12, 22, 23), but no severe changes were observed in this study. In addition, it was a new finding that immunohistochemical examination revealed that the gliosis was primarily astrocytic in nature, as evidenced by GFAP staining. The association between demyelination and astrocytic gliosis in Toxoplasma infections remains an area for future research. The distribution of lesions, particularly their association with parenchymal and meningeal blood vessels, suggests hematogenous spread of the parasite into the central nervous system. The extension of cortical inflammation into subcortical white matter further supports this mechanism. Furthermore, the progressive lesions from the gray matter to the white matter in contact with severe meningitis was thought to be due to the infiltration of *Toxoplasma* from blood vessels in the meninges and formed these lesions.

The observed brain lesions -parenchymal necrosis, demyelination, gliosis, meningitis, and perivascular

cuffing- are reminiscent of changes associated with canine distemper virus infection. CDV has been reported in wild suoids, and its lesions overlap significantly with those of *T. gondii* (2, 13, 21). Histological examination in brain of dogs infected with CDV also revealed predominantly neurons with intracytoplasmic inclusions, parenchymal necrosis, perivascular cuffing, and gliosis (2). Although no inclusion bodies were seen in our case, many of the changes were resembled to the brain lesions of CDV infection. CDV infections are common in wild suoids and there is a possibility of co-infection of *Toxoplasama* and CDV, so the immunohistochemical examination for CDV may be necessary if brain changes

are observed. However, in this case, CDV was excluded by

immunohistochemistry, ruling out co-infection.

In conclusion, we present the first pathological description of *T. gondii* encephalitis in a Collared peccary. The findings highlight severe changes in the brain (parenchymal necrosis with demyelination, gliosis, meningitis and perivascular cuffing). *Toxoplasma gondii* were detected in the brain by histological and immunohistochemical examinations. Immunohistochemical staining did not detected CDV. Focal necrosis of the liver, heart and lung, and severe edema and congestion in the lung were also observed. These results underscore the importance of including *T. gondii* in differential diagnoses of neurological disease in wild suoids.

Conflict of Interest

The authors declared no conflicts of interest with related to the authorship and/or publication of this article.

Acknowledgments

The authors are also grateful to Dr. Iris Miraballes (Instituto Polo Tecnológico de Pando, Udelar) and Dr. Florencia Pieruccioni (División de Laboratorios Veterinarios, DILAVE-MGAP) for providing the antibody against *Toxoplasma gondii*. Special thanks to Victoria Yozzi for her valuable technical assistance, and Dr. Francisco Gutiérrez for manuscript final proofreading.

References

- 1. Abdelbaset AE, Abushahba MFN, Igarashi M. *Toxo-plasma gondii* in humans and animals in Japan: An epidemiological overview. Parasitol Int. 2022;87:102533. doi: 10.1016/j.parint.2021.102533.
- Appel MJG, Reggiardo C, Summers BA, Pearce-Kelling S, Mare CJ, Noon TH, Reed RE, Shively JN, Orvell C. Canine Distemper Virus Infection and Encephalitis in Javelinas (collared peccaries). Arch Virol. 1991;119(1-2):147-152. doi: 10.1007/BF01314331.

- 3. Bandelj P, Vengušt DZ, Blagus R, Rataj AV, Krt B. High seroprevalence of *Toxoplasma gondii* in Slovenian wild boars (*Sus scrofa*). Animals (Basel). 2021;11(11):3139. doi: 10.3390/ani11113139.
- Beverley JKA, Henry L, Hunter D. *Toxoplasma* in swine. Experimental toxoplasmosis in young piglets. Res Vet Sci. 1978;24(2):139-146.
- Cole CR, Sanger VL, Farrell RL, Kornder JD. The Present Status of Toxoplasmosis in Veterinary Medicine. North Am Vet. 1954;35:265-70.
- Dakroub H, Sgroi G, D'Alessio N, Russo D, Serra F, Veneziano V, Rea S, Pucciarelli A, Lucibelli MG, De Carlo E, Fusco G, Amoroso MG. Molecular Survey of *Toxoplasma gondii* in wild mammals of Southern Italy. Pathogens. 2023;12(3):471. doi: 10.3390/pathogens12030471.
- 7. Dubey JP. A review of Toxoplasmosis in pigs. Vet Parasitology. 1986;19(3-4):181-223. doi: 10.1016/0304-4017(86)90070-1.
- 8. Dubey JP, Lindsay DS, Speer CA. Structures of *Toxoplasma gondii* tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol. 1998;11(2):267-299. doi: 10.1128/CMR.11.2.267.
- Fairley RA, Knesl O, Pesavento PA, Elias BC. Post-vaccinal distemper encephalitis in two Border Collie cross littermates. N Z Vet J. 2015;63(2):117-120. doi: 10.1080/00480169.2014.955068.
- Fredriksson-Ahomaa M, London L, Skrzypczak T, Kantala T, Laamanen L, Bistrom M, Maunula L, Gadd T. Foodborne zoonoses common in hunted wild boars. Eco Health. 2020;17(4):512-522. doi: 10.1007/s10393-020-01509-5.
- Hou Z, Wang L, Su D, Cai W, Zhu Y, Liu D, Huang S, Xu J, Pan Z, Tao J. Global MicroRNAs expression profile analysis reveals possible regulatory mechanisms of brain injury induced by *Toxoplasma gondii* infection. Front Neurosci. 2022;16:827570. doi: 10.3389/fnins.2022.827570.
- Ito S, Tsunoda K, Nishikawa H, Matsui T. 1974. Pathogenicity for piglets of *Toxoplasma* oocysts originated from naturally infected cats. Natl Inst Anim Health Q (Tokyo). 1974;14(4):182-187.
- 13. Kameo Y, Nagao Y, Nishio Y, Shimoda H, Nakano H, Suzuki K, Une Y, Sato H, Shimojima M, Maeda K. Epizootic canine distemper virus infection among wild mammals. Vet Microbiol. 2012;154(3-4):222-229. doi: 10.1016/j.vetmic.2011.07.006.
- 14. Katsube, Y, Hagiwara T, Imaizumi K, Masuda K. Latent infection of *Toxoplasma* in Swine. Jpn J Vet Sci. 1975;37(3):245-252. doi: 10.1292/jvms1939.37.245.
- Kim JH, Kyung-Il Kang K, Kang WC, Sohn HJ, Jean YH, Park BK, Kim Y, Kim DY. Porcine abortion outbreak associated with *Toxoplasma gondii* in Jeju island. Korea J Vet Sci. 2009;10(2):147-151. doi: 10.4142/jvs.2009.10.2.147.
- 16. Koestner A, Cole, CR. Neuropathology of porcine Toxoplasmosis. Cornell Vet. 1960;50:362-384.

- Kornacka A, Moskwa B, Werner A, Nowosad P, Jankowska W, Cybulska A, Majewska AC. The seroprevalence of *Toxoplasma gondii* in wild boars from three voivodeships in Poland, MAT Analyses. Acta Parasitol. 2020;65(4):490-495. doi: 10.2478/s11686-020-00185-3.
- 18. Laforet CK, Deksne G, Petersen HH, Jokelainen P, Johansen MV, Lassen B. *Toxoplasma gondii* seroprevalence in extensively farmed wild boars (*Sus scrofa*) in Denmark. Acta Vet Scand. 2019;61(1):4. doi: 10.1186/s13028-019-0440-x
- Machado DMR, de Barros LD, de Souza LNB, de Souza Pollo A, Silva ACDS, Perles L, André MR, MachadoRZ, Garcia JL, Hppe EGL. *Toxoplasma gondii* infection in wild boars (*Sus scrofa*) from the state of São Paulo, Brazil: serology, molecular characterization, and hunter's perception on Toxoplasmosis. Vet Parasitol Reg Stud Reports. 2021;23:100534. doi: 10.1016/j. vprsr.2021.100534.
- 20. Moriwaki M, Hayashi S, Minami T, Ishitani R. Detection of congenital Toxoplasmosis in piglets. Jpn J Vet Sci. 1976;38(4):377-381. doi: 10.1292/jvms1939.38.377.
- 21. Noon TH, Heffelfinger JR, Olding RJ, Wesche SL, Reggiardo C. Serologic survey for antibodies to canine distemper virus in collared Peccary (*Tayassu tajacu*) populations in Arizona. J Wild Dis. 2003;39(1),221-223. doi: 10.7589/0090-3558-39.1.221.
- Piva MM, Pereira PR, Schwertz CI, Hammerschmitt ME, Lorenzett MP, Henker LC, Driemeier D, Clemes YS, Pena HFJ, Pavarini SP. Outbreak of Toxoplasmosis associated with muscular lesions in finishing pigs caused by an atypical *Toxoplasma gondii* genotype. Braz J Vet Parasitol. 2022;31(4):e011622. doi: 10.1590/S1984-29612022055.
- 23. Sasaki Y, Iida T, Omura K, Tsutsumi Y, Tsunoda K, Ito S, Nishikawa H. 1974. Experimental Toxoplasma infection of pigs with oocysts of *Isospora bigemina* of feline origin. Jpn J Vet Sci. 1974;36(6):459-465. doi: 10.1292/jvms1939.36.459.

