Case Report

Mycobacteroides chelonae-abscessus group infection in a Paraguayan rainbow boa (*Epicrates crassus*)

Sarah Raquel Jesus Santos Simões¹, Eduardo Ferreira-Machado¹,², Jamile Macedo Garcia¹, Ticiana Brasil Ervedosa¹, Pedro Enrique Navas-Suárez¹, Isis Paixão de Jesus¹, Julia de Carvalho¹, Gabrielle Fernanda Pereira da Silva Gagliotti¹,², Rodrigo Albergaria Ressio¹, Cinthya dos Santos Cirqueira¹, Ketlyn Bolsachini Figueiredo¹, Ana Carolina Souza Ramos de Carvalho¹, Thaís Eleonora Madeira Butti³, Rodrigo Hidalgo Friciello Teixeira⁴, André Luiz Mota da Costa⁴, Maraya Lincon Silva⁴, Mayara Grego Caiaffa⁴, Cassia Regina Ramos Gonzaga⁴, Flora Nogueira Matos⁴, Juliana Mariotti Guerra¹,²,* Natália Coelho Couto de Azevedo Fernandes¹,²

¹ Pathology Center, Adolfo Lutz Institute, São Paulo, SP, Brazil
² Laboratory of Wildlife Comparative Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
³ Zoonoses Surveillance, Municipal Health Department, Sorocaba, SP, Brazil
⁴ Sorocaba Zoological Park, Sorocaba, SP, Brazil

* Corresponding author: jumariotti.vet@gmail.com

Abstract

Paraguayan rainbow boa (*Epicrates crassus*) is widely distributed in the central portion of South America, threatened by human actions, and commonly maintained as a pet or in scientific collections. *Mycobacteroides chelonae-abscessus* group (MCABC) is the most important emerging nontuberculous mycobacterium pathogen in humans. This report describes a systemic MCABC infection in a captive *E. crassus*, with heterophilic granulomatous lesions in the lungs, liver, kidneys, and peripheral nervous system. Histochemical stains demonstrated Gram-positive and alcohol-acid-fast bacilli that cross-reacted with antigens of *Bacillus Calmette-Guérin* in immunohistochemistry. A nested polymerase chain reaction followed by DNA sequencing indicated the genus of the mycobacteria. Despite the rapid systemic spread of MCABC, it is necessary to develop safer, more rapid, and more effective treatments and diagnoses to understand the role of reptiles in this disease.

Keywords: Reptile pathology, Heterophilic granuloma, *Mycobacteriaceae*, wild animal, zoological garden.

Introduction

Epicrates crassus (Paraguayan rainbow boa) is a constrictor belonging to the Boidae family, widely distributed in the central portion of South America, threatened by human actions, and commonly maintained as a pet or in scientific collections (1). Mycobacterial infections are frequently found in captive snakes and can result in localized (pulmonary, oral, dermal) or disseminated lesions (14). The *Mycobacteroides chelonae-abscessus* group (MCABC) members are close to the mycobacterial ancestor and include human and other mammals, reptiles, and fish pathogens (4). It is the most important emerging nontuberculous mycobacterium pathogen due to its high rate of antimicrobial resistance and rapid growth (12). They are alcohol-acid-fast, aerobic, non-spore-forming, and non-motile bacilli (4). This work aims to report an infection by MCABC in a captive *E. crassus* in the state of São Paulo, Brazil.
Case description

A captive adult female *E. crassus* presented with dehydration, hyporexia, weight loss, regurgitation, and skin lesions for three days. The serpent was referred to the veterinary sector, and the treatment consisted of fluid therapy, nutritional support, supplementation with vitamin C, and antibiotic therapy with enrofloxacin every 48 hours. The animal was found dead in the enclosure after three months. At postmortem examination, it was observed a poor body condition score, weighing 0.260 kg, and three skin lesions in the dorsal region of the middle third of the animal, ranging from 1-5 cm in length and from 0.5-1 cm in width, with red and necrotic areas. Foaming serous fluid content in the trachea and granulomas of approximately 2 mm of diameter distributed throughout the pulmonary parenchyma were observed (Fig. 1). The liver was brown with an irregular surface. The stomach had thickened mucosa.

For histologic analysis, fixed samples were embedded in paraffin wax, sectioned at 4μm thick and stained with Hematoxylin and Eosin (HE), Brown-Brenn, Grocott-Gomori’s methenamine silver, and Ziehl-Neelsen stains. Histopathological examination revealed marked to moderate multifocal heterophilic granulomatous lesions in the parenchyma of the lungs, liver (Fig. 2A), and kidney, and a focal in periphery nervous system in the lungs (Fig. 2B). Severe diffuse hepatocyte macrovesicular degeneration was observed in liver sections. Abundant Gram-positive (Fig. 2C)
and acid-alcohol-resistant bacilli (Fig. 2D) were evidenced inside the granulomas. Deparaffinized 3µm sections of tissues in silanized slides were submitted to endogenous peroxidase block with 6% hydrogen peroxide for 30 min, followed by overnight incubation with anti-Mycobacterium bovis bacillus Calmette-Guérin (BCG) (rabbit polyclonal, Dako A/S, Glostrup, Denmark) at a concentration of 1/30,000. The signal was amplified by an HRP-polymer detection system (Spring Bioscience, Pleasanton, CA, USA), and visualization was achieved by chromogenic substrate with diaminobenzidine. The samples were counterstained with Harris Hematoxylin (20 sec), followed by dehydration and slide mounting with synthetic resin. Pulmonary mammal tissue fragments known to be positive and confirmed by immunohistochemistry (IHC) were used as positive controls. The same steps were followed for the negative control, except the incubation of the primary antibody, replaced by non-immune serum from those species where the antibodies were generated. The IHC identified the presence of BCG antigens in granulomas of the kidney, lung, and liver (Fig. 3).

DNA from fresh frozen liver samples was extracted using Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA). A semi-nested polymerase chain reaction (PCR) was performed with oligonucleotide primers specific for the 65-kDa antigen gene of mycobacteria (3) and GoTaq® Green Master Mix (Promega). The PCR amplicons were purified with ExoSap-IT (USB/Affymetrix, Santa Clara, CA, USA) and subjected to dye terminator cycle sequencing. Sequencing products were treated with BigDye® Terminator purification Kit (Applied Biosystems, Foster City, CA, USA) and electrophoresed on an Applied Biosystems 3500 genetic analyzer. The sequences were assembled and re-edited with sequence editor software BioEdit 7.2.5, and the consensus sequence was compared with the GenBank DNA database using the basic local alignment search tool (BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on Nov 16, 2022). The result sequence was submitted to GenBank (Accession number OQ116678) and exhibited 96.27% nucleotide sequence similarity with the GenBank DNA database (Accession number ON194490 for M. abscessus subsp. Abscessus; ON194488 for M. abscessus subsp. massiliense and OP899893 to OP899898 for M. chelonae isolated from human patients in Iran) in a query cover length of 98%.

Discussion

This report describes a systemic MCABC infection in a captive E. crassus, with heterophilic granulomatous lesions in respiratory, hepatic, renal, and peripheral nervous system associated with cachexia and hepatic metabolic steatosis. The MCABC infection was detected by histological, IHC, and molecular techniques. Fast-growing mycobacteria have been observed as important human pathogens, present in water sources, soil, and domestic and wild animals as opportunistic pathogens (5, 6, 16). The distinguished genus Mycobacteroides was one of five recently proposed genera in which Mycobacterium was divided based on the analysis of specific genetic markers (19). Previously designated as M. chelonae subspecies abscessus, Mycobacteroides abscessus complex was recognized as an independent species, and whole-genome sequencing-based phylogenetic studies supported the differentiation of three distinct subspecies: M. massiliense, M. bolletii, and M. abscessus (10, 11). However, it still has phylogenetic proximity to M. chelonae (10,11). MCABC also exhibits several similarities with Mycobacterium tuberculosis, such as the induction of granulomatous lesions (9), and the etiologic diagnosis is only possible by molecular techniques (6).

Mycobacterial infections have already been described in captive reptiles, most common by ubiquitous opportunistic pathogens (5, 6, 16). The distinguished genus Mycobacterium is the most commonly reported cases in snakes are by M. thammopheos and M. chelonae with systemic distribution (15, 17). There is only one report of the Mycobacterium chelonae/abscessus group in a crocodile (Crocodylus niloticus) with multifocal to coalescing heterophilic granulomas in the lungs and other organs (7). Mycobacterial infections typically culminate in granulomatous inflammation in captive snakes that can be localized (pulmonary, oral, dermal) or disseminated (14). They are most often characterized by the formation of
histiocytic or chronic granulomas; however, the histological appearance of these infections can vary widely, occasionally manifesting as heterophilic granulomas, depending on the agent involved and the host response (13, 18). Therefore, it is crucial to search for mycobacteria in this type of lesion (17). In heterophilic granulomas, there is degranulation and necrosis of heterophils in the center of the lesions, while at the edges, intact heterophils and macrophages are observed. As exudates in reptiles do not liquefy, it is believed that forming granulomas is a way to disperse the infectious process (18). The rapidly growing mycobacteria usually stain quite well with a Gram stain, as Gram-positive bacilli, and may not be easily recognized as acid-fast organisms.

MCABC has been described on a global scale as an emerging, underestimated pathogen of great relevance to One Health. Human infections without risk factors with local or disseminated lesions have already been reported (8). MCABC is intrinsically resistant to many classes of antibiotics, such as beta-lactams, aminoglycosides, and rifamycin (2). Despite the rapid spread and difficulties in treating MCABC, it is necessary to invest in developing safer, more rapid, and more effective treatments and diagnoses. More studies should be conducted to establish the role of reptiles infected by mycobacteria as potential reservoirs and sources of infection for human or other animal pathogen transmission.

Conflict of Interest

The authors declare no competing interests.

Acknowledgments

We would like to thank all staff at Biological Sample Management Center, Anatomic Pathology Laboratory, and Quantitative Pathology Laboratory at Adolfo Lutz Institute.

Funding

This study was supported by Grupo de Apoio às Políticas de Prevenção e Proteção à Saúde/Fundo Especial de Saúde para Imunização em Massa e Controle de Doenças (GAPS/FESIMA # 040/2019 and # 28/2020), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (#404510/2021), and PDIP - São Paulo Research Foundation (FAPESP) (grant# 2017/50333-7).

Additional information

The registration access on the National System for Genetic Heritage and Associated Traditional Knowledge Management (SisGen, Brazil) was under number AD49254.

References

Mycobacteroides chelonae-abscessus group infection in a Paraguayan rainbow boa (Epicrates crassus)